If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6r^2-384=0
a = 6; b = 0; c = -384;
Δ = b2-4ac
Δ = 02-4·6·(-384)
Δ = 9216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9216}=96$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-96}{2*6}=\frac{-96}{12} =-8 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+96}{2*6}=\frac{96}{12} =8 $
| 22x+55x=420 | | -10+9v=10v | | (x-5)-(x+3)=7x | | 9y-33=3(y-5) | | 12x-9+15x+4=3(9x-8)+7 | | 42-(3c+4=2(c+4)+c | | -7x+40=6(1-5x) | | 0=30-6x | | 10x-9-7x=3(x-3) | | 4n+25=3n+29 | | -2(w+2)=-5w+26 | | 5b-6b=6 | | 7(2x-3)=-6x+19 | | 3.4z=7 | | 6v+6v=24 | | 5x-9=3x-25 | | 3r+7r=0 | | x÷-9=-16 | | 4/7p^2=20 | | 2-8b-2b=12 | | 14v=36+8v | | (b/10)+(b/4)=7 | | -7x-7+5x=-5 | | 1/2s=-30 | | 3(-2x-5)=-1 | | 3^x+5=4+3^x+3 | | -4x+2=6x+1 | | -6x-1=-26/5 | | 3/4=9/7x+5 | | 3x2–12=–12 | | -4x+2=6+1 | | 10x-6x+2=18 |